引用本文:周 琪,窦同意,丁乐乐,曲明佳,翁仔淼,吴大畅,侯 洁.β-葡萄糖醛酸苷酶的重组表达及对黄芩苷的生物转化[J].大连医科大学学报,2017,39(2):110-115.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
β-葡萄糖醛酸苷酶的重组表达及对黄芩苷的生物转化
周 琪1, 窦同意2, 丁乐乐1, 曲明佳1, 翁仔淼1, 吴大畅1, 侯 洁1
1.大连医科大学 生物技术系, 辽宁 大连 116044;2.中国科学院大连化学物理研究所 生物技术部 药用资源开发组, 辽宁 大连 116023
摘要:
目的 构建表达β-葡萄糖醛酸苷酶(β-glucuronidase,GUS)的重组菌株,得到高纯度β-葡萄糖醛酸酶,进而对黄芩苷进行生物转化获得黄芩素。方法 以 E.coli K12基因组DNA为模板,采用PCR方法扩增GUS基因,经酶切后连接到表达载体pET-28a中,获得重组表达载体pET28a-GUS,将重组载体转化到感受态细胞BL21(DE3)中,对所得基因工程菌进行培养条件和表达条件的优化;后经分离纯化后得到高纯度β-葡萄糖醛酸酶。以黄芩苷为底物进行酶法转化生产黄芩素,并对反应条件进行优化。结果 经测序,扩增的重组质粒目的基因序列与数据库中GUS基因序列一致。经IPTG(isopropy-β-D-thiogalactoside)诱导表达后,SDS-PAGE分析获得分子质量70 kDa的单一蛋白条带,工程菌最适培养条件为:37 ℃、pH7.2、IPTG浓度0.6 μmol/L、诱导时间12 h。经过离心破碎、亲和层析、冻干后得到高纯度β-葡萄糖醛酸酶冻干粉。在该酶催化转化下,黄芩苷可转化为黄芩素,在40 ℃,pH 6.5,酶浓度60 μg/mL条件下,反应2.5 h,黄芩苷转化率可达72.5%。结论 成功构建了β-葡萄糖醛酸苷酶高表达菌株,并用于黄芩苷的定向水解制备黄芩素,为生物转化法生产黄芩素提供了新思路。
关键词:  黄芩素  酶解  黄芩苷  β-葡萄糖醛酸苷酶
DOI:10.11724/jdmu.2017.02.02
分类号:Q819; R284.3
基金项目:基金项目:国家自然科学基金项目(81273590,81302793);精细化工国家重点实验室开放课题(KF1408)
Bioconversion of baicalin to baicalein with recombinant β-glucuronidase in Escherichia coli
ZHOU Qi1, DOU Tongyi2, DING Lele1, QU Mingjia1, WENG Zimiao1, WU Dachang1, HOU Jie1
1.Department of Biotechnology, Dalian Medical University, Dalian 116044, China;2.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract:
Objective To develop a novel and environmental-friendly method for bioconversion of baicalin to baicalein with recombinant β-glucuronidase. Methods The β-glucuronidase encoding gene (GUS) was cloned from Escherichia coliwild strain K12, and transformed into Escherichia coli BL21 (DE3) with pET-28a (+) as the vector. β-Glucuronidase was overexpressed and then purified by Ni affinity chromatography in one step. The biotransformation of baicalin to baicalein was performed by the recombinant β-glucuronidase, and the reaction conditions were optimization with orthogonal design. Results The protein was identified by SDS-PAGE with 70 kDa, and the maximum expression level could be achieved after induction for 12 h with 0.6 μmol/L IPTG, and 320 mg of purified enzyme, which could be obtained from one liter of bacterial culture. With the catalysis of the recombinant β-glucuronidase, the baicalin was transformed to baicalein with 72.5% conversion ratio under optimized conditions. Conclusion A novel and environmental-friendly scheme for bioconversion of baicalin to baicalein with recombinant β-glucuronidase was established. The method would hold great promise for further applications in both scientific research and biomedical industry.
Key words:  baicalein  biosynthesis  baicalin  β-glucuronidase